
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 5. November 2018
Markus Püschel, David Steurer

Datenstrukturen & Algorithmen Bla� P7 HS 18

Please remember the rules of honest conduct:

• Programming exercises are to be solved alone

• Do not copy code from any source

• Do not show your code to others

Hand-in: Sunday, 18. November 2018, 23:59 clock via Online Judge (source code only).
�estions concerning the assignment will be discussed as usual in the forum.

Exercise P7.1 Bitcoins.

As an employee of the Federal Tax Administrations o�ce in Switzerland you have been tasked to mon-
itor bitcoin transactions. In particular, you are interested to discover the range of the 1/3 most valuable
transactions ever made using bitcoin. �e bitcoin network is a distributed database that constantly gets
updated, and continuously grows in size. As a result, you need to create a live system that can e�-
ciently consume new transactions, and report the range from the bn/3c-th most valuable transaction
to the most valuable transaction. �erefore, your system supports two operations:

1. Insert. �e insertion is done by entering the number 1 on the standard input, followed by a
number V (1 ≤ V ≤ 109) that indicates the (integer) value of the new transaction. Every time a
transaction is added, the number of transactions n in the system is increased by 1.

2. Report. �e reporting is done by entering the number 2 on the standard input. �en the moni-
toring system will report the bn/3c-th transaction and the �rst transaction, assuming that all n
transactions have been previously sorted in a decreasing order. If n < 3 at the time the reporting
routine is being invoked, the system will print out the message Not enough transactions.

Note that as the monitoring system is live, it is capable of executing both operations in any order (i.e.,
insert and report can come one a�er the other) and the report routine can be as frequent as the insert
routine. Also note that every time the report routine is invoked, it will perform an analysis on the
transactions already available by the system.

Input �e �rst line of the input consists of the number Q (1 ≤ Q ≤ 5 · 105) that indicates the
number of routines that will be invoked. Each of the nextQ lines contain either an insert routine in the
form of “1 V” or a report routine in the form of “2” as described above.

Output �e output consists of R (R ≤ Q) lines such that R corresponds to the number of report
routines present in the input. Each line is either the message Not enough transactions or two numbers
L and H in the form of “L - H” such that L is the bn/3c-th most valuable transaction and H is the
most valuable transaction present in the system when the report routine was invoked. �e output is
terminated with an end-line character.

Grading You get 3 bonus points if your program works for all inputs. Ideally, your algorithm should
require O(1) time for the report routine and O(log(n)) for the insert routine (with reasonable hid-
den constants). Submit your Main.java at https://judge.inf.ethz.ch/team/websubmit.php?cid=
25012&problem=AD18H7P1. �e enrollment password is “asymptotic”.

Example

Input:

12

1 1

1 7

2

1 9

1 8

1 5

1 6

2

1 21

2

1 9

2

Output:

Not enough transactions

8 - 9

9 - 21

9 - 21

A detailed explanation for the 12 routines above:

1. Insert 1 to the array. Current array is [1].

2. Insert 7 to the array. Current array is [7,1].

3. Report. Array size is less than 3. Output is Not enough transactions.

4. Insert 9 to the array. Current array is [9,7,1].

5. Insert 8 to the array. Current array is [9,8,7,1].

6. Insert 5 to the array. Current array is [9,8,7,5,1].

7. Insert 6 to the array. Current array is [9,8,7,6,5,1].

8. Report. Array size is 6. bn/3c = 2, and the 2-nd element in the sorted array is 8 and highest is 9,
therefore L = 8 and H = 9. Output is 8 - 9.

9. Insert 21 to the array. Current array is [21,9,8,7,6,5,1].

10. Report. Array size is 7. bn/3c = 2, therefore L = 9 and H = 21. Output is 9 - 21.

11. Insert 9 to the array. Current array is [21,9,9,8,7,6,5,1].

12. Report. Array size is 8. bn/3c = 2, therefore L = 9 and H = 21. Output is 9 - 21.

2

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H7P1
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H7P1

Notes For this exercise we provide an archive containing a program template available at https://
www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P1.Bitcoins.zip�earchive also
contains additional test cases (which di�er from the ones used for grading). Importing any additional
Java class is not allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class).

Solution.

�e solution is based on using two heaps, a min-heap, and a max-heap, and is given below:

1 public static void read_and_solve(InputStream in , PrintStream out)

2 {

3 Scanner scanner = new Scanner(in);

4 int Q = scanner.nextInt ();

5
6 MaxHeap maxHeap = new MaxHeap (2 * Q / 3 + 2);

7 MinHeap minHeap = new MinHeap (Q / 3 + 2);

8 int maxValue = Integer.MIN_VALUE;

9
10 while (Q-- > 0) {

11 int command = scanner.nextInt ();

12 if (command == 1) {

13 maxHeap.insert(scanner.nextInt ());

14 if (maxHeap.size() == 3) {

15 maxValue = maxHeap.pop ();

16 minHeap.insert(maxValue);

17 break;

18 }

19 } else if (command == 2) {

20 out.println("Not enough transactions");

21 }

22 }

23 while (Q-- > 0) {

24 int command = scanner.nextInt ();

25 if (command == 1) {

26 // Get the value , and update the max if necessary ,

27 // then insert the value into one of the heaps

28 int value = scanner.nextInt ();

29 if (value > maxValue) maxValue = value;

30 if ((maxHeap.size() + minHeap.size ()) % 3 == 2) {

31 minHeap.insert(value);

32 } else {

33 maxHeap.insert(value);

34 }

35 // Now check whether we need to transfer an element

36 // from one heap to the other.

37 if (minHeap.top() < maxHeap.top()) {

38 maxHeap.insert(minHeap.pop ());

39 minHeap.insert(maxHeap.pop ());

40 }

41
42 } else if (command == 2) {

43 out.println(minHeap.top() + " - " + maxValue);

44 }

45 }

46
47 scanner.close ();

48 }

Explanation

�e �rst observation is, that as we are givenQ routines, we can insert at mostQ elements. As a result,
we need memory space ofO(Q) in the worst case scenario, or in other words, possibly an array of size
n such that n = Q. As we need to output two values, namely the 1-st and the bn/3c-th value once the
array is sorted in descending order, we can maintain a single variable that represents the max for the
former one and update this value upon each insertion.

3

https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P1.Bitcoins.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P1.Bitcoins.zip

For the rest of the values, we could maintain an array of size n. However, as new transactions are
inserted into the system, n as well as the array would grow, and thus to obtain the bn/3c-th instruction,
we would have to sort the array. Depending on the choice of the algorithm for sorting, this could take
us at least O(n) complexity, assuming that insertions sort is used every time we insert a new element.
As such we would not be able to insert in O(log(n)) time, as suggested in the problem statement.

We could maintain a heap for the highest bn/3c transaction, in particular a min-heap. �is would allow
us insertion time in O(log(n)) time, and the bn/3c-th highest transaction will always stay at the top
of the heap, allowing us to access it in O(1) time. However, as n grows, we should be able to fetch the
next highest transaction (smaller than the one on the top of the min-heap) and add it to the min-heap
in order to be able to return the bn/3c-th highest transaction. �is means that the rest of n − bn/3c
transactions must be somehow sorted.

To achieve both, we can maintain two heaps, a min-heap for the highest bn/3c transactions and a
max-heap for the rest of n − bn/3c transactions. In order to make sure that the bn/3c-th transaction
is always at the top of the min-heap, the following property must hold:

min-heap.top() ≥ max-heap.top(). (1)

Every time, a new transaction is being inserted, we can insert it in one of the heaps. Namely, every
third insertion, we can add it to the min-heap, to make sure that it holds bn/3c elements as n grows,
and every other transaction we insert it in the max-heap. �en, a�er a transaction is inserted, we check
whether property (1) holds. If it doesn’t, we pop the top elements from both heaps, and we transfer
them in the opposite heap. In such scenario, insertion will take O(log(n)), as inserting and removing
elements from heap takes O(log(n)), and the bn/3c-th highest transaction will always be at the top of
the min-heap, thus accessible in O(1).

�e algorithm above works as follows:

1. (lines 6-8) It maintains two structures, a min-heap represented with variable minHeap and a max-
heap represented with variable maxHeap. It also maintains a single variable maxValue, that will
hold the transaction with the maximal value. �e min-heap is intended to store the �rst bn/3c
values, while the max-heap the rest of the n − bn/3c values, and as a result both are initialized
with su�cient memory space.

2. (lines 10-22) It takes care of inserting the �rst 3 transactions and prints Not enough transactions
in case the reporting routine is invoked.

3. (lines 23-45) Either prints the bn/3c-th and the 1-st highest transactions, or inserts a transaction
in one of the heaps. At each insertions, the algorithm will make sure that property (1) holds.

To illustrate the algorithm, consider the following list of 15 transactions that have to be inserted into
the system (the order is de�ned from le� to right):

11 12 14 17 16 1 7 13 19 3 10 20 8 6 4

Now let’s assume that we have already inserted 14 transactions into the system. �emin-heap structure
will contain the highest bn/3c = b14/3c = 4 transactions, while the max-heap will contain the rest
of the 10 transaction. In the min-heap, the bn/3c transaction (assuming transactions are sorted in
decreasing order) is at the top of the heap. And thus is accessible in O(1). In the max-heap, the next
highest transaction is accessible at the top of the heap as well, and thus accessible in O(1) too.

4

16

17

20

19

16 17 19 20

Min-Heap

14

11

10

1 8

7

6

13

12 3

14 11 13 10 7 12 3 1 8 6

Max-Heap

Now, lets insert transaction with value of 4 into the structure. As it is the 15-th transaction in a row,
we insert it into the min-heap structure.

4

16

20 17

19

4 16 19 20 17

Min-Heap

14

11

10

1 8

7

6

13

12 3

14 11 13 10 7 12 3 1 8 6

Max-Heap

Property (1) no longer holds. �erefore, we pop the top element from the min-heap (with value 4), and
we pop the top element from the max-heap (with value 14). �en we insert element with value 4 into
the max-heap, and we insert element with value 14 into the min-heap. Finally, property (1) holds again,
and we obtain:

14

16

20 17

19

14 16 19 20 17

Min-Heap

13

11

10

1 8

7

6

12

4 3

13 11 12 10 7 4 3 1 8 6

Max-Heap

5

Exercise P7.2 Mountain Trip.

A road is n kilometers long and passes through several cities. Each city can be either a mountain city or
a sea city. �ere areM mountain cities, the i-th of which is locatedmi kilometers a�er the beginning of
the road. Similarly, there are S sea cities and the i-th sea city is located si kilometers a�er the beginning
of the road (mi and si are integers between 0 and n, endpoints included, and each kilometer of the road
can traverse at most one city).

A travel agency o�ers T possible trips. �e i-th trip starts from kilometer bi and ends at kilometer ei
of the road, visiting all the cities in-between (endpoints included). Alice wants to buy a trip that visits
the largest number of mountain cities and that does not visit any sea city.

Your task is to design an algorithm that �nds the best trip for Alice.

Input �e input consists of a set of instances, or test-cases, of the previous problem. �e �rst line
of the input contains the number C of test-cases, and each test-case consists of 5 lines. �e �rst line of
each test-case contains the four integers n,M , S, and T . �e second line containsM integers, where
the i-th integer is the position mi of the i-th mountain city. �e third line contains S integers, where
the i-th integer is the position si of the i-th sea city. �e fourth line contains T integers, where the i-th
integer is the number bi. Finally, the ��h line also contains T integers, where the i-th integer is the
number ei.

Output �e output consists of C lines, where the i-th line is the answer to the i-th test-case and
contains the index of the best trip, i.e., an integer t such that 1 ≤ t ≤ T and:

(1) there exists no j such that bt ≤ sj ≤ et;

(2) for every index r 6= t that satis�es condition (1), |{j : br ≤ mj ≤ er}|< |{j : bt ≤ mj ≤ et}|.

You can assume that such an index t always exists.

Grading �is exercise awards no bonus points. Your algorithm should requireO ((M + S + T) log(M + S))
time (with reasonable hidden constants). Submit your Main.java at https://judge.inf.ethz.ch/
team/websubmit.php?cid=25012&problem=AD18H7P2. �e enrollment password is “asymptotic”.

Example

0 1 2Km 3 4 5 6 7 8 9 10 11

trip 1

trip 4

trip 2

12

trip 5

trip 3

Input (corresponding to the instance in the previous picture):

1

12 7 3 5

10 8 5 3 9 1 12

6 2 11

1 5 8 3 7

3 7 11 5 8

Output:

4

6

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H7P2
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD18H7P2

Notes For this exercise we provide an archive containing a program template available at https://
www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P2.MountainTrip.zip�earchive
also contains additional test cases (which di�er from the ones used for grading). Importing any addi-
tional Java class isnot allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class).

Solution.

We �rst consider the following auxiliary problem: given a sorted vector A = 〈a1, a2, . . . , aη〉 of m
distinct integers and two additional numbers x, y, compute the number N(A, x, y) of elements a in A
such that x ≤ a ≤ y. �is problem can be solved in O(log η) time by performing two binary searches
on A: the �rst binary search looks for the largest index i ≤ m such that ai < x, while the second
binary search looks for the smallest index j > 0 such that aj > y.1. �e elements of A between x and
y are exactly the ones in the sub-array 〈ai+1, ai+2 . . . , aj−2〉 and hence N(A, x, y) = j − i+ 1.

To solve the original problem we �rst sort the arrays 〈s1, . . . , sS〉 and 〈m1, . . . ,mM 〉 containing the
positions of the sea and mountain cities, respectively. Let S′ andM ′ be the sorted vectors, respectively,
and notice that this step requiresO(S logS+M logM) time (e.g., usingMergesort). �en, we examine
one trip ad a time: when the i-th trip is considered we check whether N(S′, bi, ei) > 0 and, if this is
the case, the trip is ignored. Otherwise, if N(S′, bi, ei) = 0, we compute the number N(M ′, bi, ei)
of mountain cities visited by the trip and we keep track of the best trip examined so far. �e time
required by this step is O(logS + logM) per trip, therefore the total time spent by the algorithm is
O((T + S) logS + (T +M) logM) = O((M + S + T) log(M + S)).

1If a0 ≥ x then let i = 0. If am ≤ y then let j = m+ 1.

7

https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P2.MountainTrip.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD18H7P2.MountainTrip.zip

